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Abstract. Thermodynamic and electronic properties are obtained for a lattice-gas model fluid
with self-consistent, partial occupation of its sites; the self-consistency consists in obtaining
ionic configurations from grand-canonical Monte Carlo simulations based on fits to the exact,
electronic, tight-binding energies of isothermal ensembles of those same ionic configurations.
The energy of an ion is found to be a concave-up function of its local coordination. Liquid–
vapour coexistence densities and the electrical conductivity, which shows a metal–non-metal
transition, have been obtained.

1. Introduction

The statistical mechanics of simple insulating liquids is a well developed subject, with
different approaches being used to obtain the thermodynamics and the correlation structure
from the pairwise additive interaction potential between atoms or molecules [1]. A quantum-
mechanical study of the atomic or molecular structures provides the interatomic potential,
but, in all other respects, the interaction is decoupled from the classical statistical-physics
problem of obtaining the positions and correlations of the atoms. One of the more striking
deviations from thissimple liquid behaviour is provided by liquid metals, in which the
conduction electrons are fully delocalized, and the system has to be treated as a mixture
of ions (with classical statistics) and electrons (with Fermi–Dirac statistics). The study
of dense liquid metals, near the triple-point temperature, has been based on a double
perturbative expansion [2] around areference simple fluidfor the ions, and around the
jellium model for the conduction electrons. The vapour, at coexistence with the liquid
metal, has a qualitatively different electronic structure, with the valence electrons localized
in neutral atoms or clusters. At low temperature, the vapour has extremely low density
and is almost trivial. In the neighbourhood of the critical point, and of the metal–non-
metal transition region, the interrelation between electronic delocalization and ionic structure
becomes crucial, and the approaches valid at low temperature fail qualitatively.

Recent experimental data on the critical region of the alkali fluids [3] provide strong
motivation for a more extensive theoretical study of these systems [4, 5]. Our main objective
here is to set up a minimal model, including the main relevant features of the coupling
between the electronic and the ionic structure, in order to analyse the statistical-physics
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problem posed by these systems. We have reported [6] preliminary calculations using
this approach. In our model, we forsake the ‘state-of-the-art’ description of liquid metals in
condensed matter physics, and our model neglects aspects of the problem which are certainly
relevant for some properties of these systems. However, we show that many qualitative
effects of the coupling between electronic and ionic structures are already present in a very
simple model. This approach allows the study of the critical region through Monte Carlo
simulation with systems of large size, compared with those used in ‘state-of-the-art’ models,
and helps in discerning the crucial features which yield a liquid–vapour coexistence curve
and an electrical conductivity which show that the alkali fluids are qualitatively different
from the simple fluids.

Even in a very simple model, the exploration of the liquid–vapour coexistence in the
neighbourhood of the critical point requires large simulation boxes, which renders multiple
exact solutions of the tight-binding problem rather expensive, computationally. Thus, for
our Monte Carlo simulation, the electronic free energy will be determined using a mapping
of the cohesive energies onto the local environment of each ion, an approach used in
our previous work [7, 8] which finds stronger justification here. This mapping may be
regarded as a simplified version of theglue model which was proposed and used to study
the properties of solid and fluid metals in [9]. The main difference from that work is that, in
the present case, the mapping is not an empirical form used to fit macroscopic parameters
(cohesive energy, bulk modulus, etc) and then used to obtain other properties of the system.
Here, the mapping is used to fit exact solutions for an ensemble of systems described at
the microscopic level, and the goodness of the fit provides a direct check of its quality as
a trial function, before its use to study thermodynamic properties of the system.

2. The tight-binding lattice-gas model

Our first simplification consists in using a lattice-gas model to represent the ionic structure.
Thus, the ions are constrained to partially occupy the sites of a chosen lattice. The
critical behaviour of such ‘lattice-gas’ models, with simple pair interactions, shows that
they belong to the same universality class as simple fluids; so we may assume that the long-
range fluctuations in the critical region are not qualitatively affected by this simplification.
Although in the main body of this work the underlying lattice structure is taken to be body-
centred cubic (bcc), since it has the same maximum coordination as is observed for the
alkali fluids, we shall also investigate the face-centred cubic (fcc) structure to analyse the
influence of the lattice on the results.

The electronic properties of our model are described by the simplest one-electron tight-
binding Hamiltonian for each ionic configuration, withN ions partially occupying theM
sites of the lattice. Thus, we postulate a single electronic orbital at each occupied lattice site
(no orbitals at the empty sites) and the electronic hopping is restricted to nearest-neighbour
(nn) occupied sites. The one-electron energies,εn, and wavefunctions,φn(i) (the probability
amplitudes that an electron occupies the orbital on the ion at sitei), depend on the ionic
configuration. They are then = 1, . . . , N solutions of the eigenvalue equation

(εa − ε)φ(i)− t
nn∑
j

φ(j) = 0 (1)

for i = 1, . . . , N and with the sum overj extended to all of the occupied sites which are
nn to sitei, either directly or through the periodic boundary conditions imposed. The site
energy,εa, corresponds to that of the atomic orbital, andt is the constant hopping parameter
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for hopping between occupied nn sites. The one-electron eigenstates are to be occupied,
using Fermi statistics, with probability

fn = [exp((εn − µe)/kBT )+ 1]−1. (2)

The electronic chemical potentialµe is used to fix the total number of electrons to be equal
to the total number of atoms. The only energy associated with each ionic configuration is
the electronic free energy:

U = 2
N∑
n=1

εnfn + kBT [fn ln fn + (1− fn) ln(1− fn)]. (3)

If orthonormal solutions to (1) are chosen, charge neutrality at each site is obtained.
An obvious limitation of the present approach is the complete neglect of electron–electron
interactions. It is noteworthy that this neglect results in an overestimate of the single-atom
entropy, and an underestimate of the experimental dimer energy in comparison with the
cohesion of the densest system. A similar model for expanded alkali metals was proposed by
Franz [10] using a Cayley-tree approximation for the ionic configuration. Franz’s work did
not study the thermodynamic properties of the system, decoupled the ionic and the electronic
structure, and only calculated the electronic conductivity and the magnetic susceptibility.

Structural, thermodynamic, and electronic self-consistency demand that the probability
of finding any ionic configuration be proportional to its Boltzmann factor, exp(−(U −
Nµ)/kBT ), in a grand-canonical ensemble with chemical potentialµ. The self-consistency
requirement is the same for very rarefied (N � M) and for very dense (N ≈ M) config-
urations, although their electronic states are very different. In all cases, the preferential
double occupancy of the lower energy states provides the cohesive energy of the system.
Once the underlying lattice structure is chosen, the only parameters in the model areεa and
t . The parametrization is simplified by takingεa = 0 as the energy origin, and usingt as
the energy scale.

3. Results and discussion

Monte Carlo methods can now be used to determine the equilibrium ionic structures in
conjunction with the exact tight-binding electronic calculations. We have used simulation
cubes with six, seven, and ten bcc cells on each side (432, 686, and 2000 sites, resp-
ectively) and periodic boundary conditions. But, as we have commented previously, this
approach is computationally expensive and it is therefore interesting to first examine simple
approximations to the problem of finding the statistical equilibrium configurations for the
ions; these alternative procedures also allow the obtaining of further insight into the problem.

3.1. Mean-field approximation

The simplest approximation which relates the electronic and thermodynamic properties of
our model is a macroscopic mean-field treatment. In this approximation, electronic feedback
to the structure is ignored and the ions occupy the lattice sites randomly. It is only required
that the lattice occupation have a mean densityρ = N/M and that a single ion per lattice
site be allowed. We then obtain the electronic free energyU(T ) in (3), for a spectrum
of realizations of the randomly disordered lattice-site occupations which range from nearly
empty to nearly full lattices. An exact diagonalization is carried out for each realization;
the electronic structure is found to depend on the specific realization. Results for the energy
per ion,u = U/N , as a function of the mean density are presented in figure 1 for the bcc
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Figure 1. The electronic free energy per ion (in units oft) as a function of the mean fractional-
occupation density of the bcc lattice, from a random-occupation ensemble and with the electronic
entropy corresponding tokBT /t = 0.4.

lattice; a typical example withkBT /t = 0.4 was chosen for this figure. The values ofu,
for different realizations with the same value ofρ, have a substantial scatter around their
mean valueū(ρ, T ), particularly at low densities. This scatter should scale out with an
inverse power of the lattice size; in our finite system, the scatter reflects the energies of
ionic configurations with the same number of ions distributed in different (random) patterns.
Each isotherm of the average energy per particle is a concave-up function. This functional
shape is strikingly different from the straight-line dependence obtained for pair-interacting
systems. Our lattice model, at this level of approximation, is equivalent to a description of
the electronic properties in continuous models of a fluid, with the correlation structure being
that of a system of hard spheres [4, 5, 11]. Such calculations only take into account the
packing restrictions, without accounting for fluctuations in the clustering. The difference
between the present approach and those for which references are given above is that now
we explore the thermodynamic implications of that electronic band structure, with the bold
assumption that it provides the only cohesive energy.

In this mean-field approximation, the Helmholtz free energy per ion is obtained from
ū(ρ, T ) minusT times the ideal-lattice-gas entropy contribution at each density:

F/N = ū(ρ, T )+ kBT
[

ln(ρ)+ (1− ρ)
ρ

ln(1− ρ)
]
. (4)

Equation (4) can now be used to obtain a liquid–vapour coexistence curve; the result is
shown as a solid line in figure 2. The critical temperature is found to bekBT

mf
c /t = 0.56.

The coexistence curve obtained exhibits an asymmetry between the densities of the
coexisting vapour,ρv, and liquid, ρl . The asymmetry obtained contrasts with the fully
symmetric results,ρv = 1 − ρl , appropriate to a lattice gas with nn pair interactions.
In that latter case, we know that the mean-field approximation overestimates the critical
temperature by about 20%. In the following sections we shall examine what results arise
from fluctuations with our tight-binding lattice-gas model.
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Figure 2. Liquid–vapour coexistence curves, with the temperature in units oft/kB , versus the
fractional-occupation density of the lattice,ρ. The lines are the results of mean-field calculations,
equation (4), with the solid one for bcc structure and the dotted one for fcc structure (with an
electronic hopping of 0.82t). The open circles are the self-consistent bcc Monte Carlo results,
obtained using the coefficients in equation (5); similarly, the full circles are the fcc results (with
an electronic hopping of 0.82t).

3.2. Monte Carlo simulation

In our model, the electronic free energy is determined by first solving (1) and then occupying
the states thermally to obtain the results of (3). Naturally, the eigenvalue equations depend
on the ionic correlations through the distribution of occupied sites. In turn, as previously
mentioned, the distribution of site occupations is a function of the Boltzmann factors, which
depend on the results of (3). Thus, this is a closed system with the distribution of site
occupations and the electronic free energy requiring self-consistent determination for each
set of thermodynamic conditions.

It seems reasonable to attempt a description of the electronic free energy (3) for each
value of T , and representative ensembles of site occupations, as a function of the nn
environments of the occupied sites [7, 8]. Thus, we try a least-squares fit, to such ensembles
of realizations, with a trial form:

U(T ) =
kmax∑
k=0

uk(T )Nk (5)

whereNk are the number of ions withk occupied nn in each realization andkmax is the
coordination number of the lattice. Ions withk = 0 represent isolated atoms; equation (3)
yields u0 = −2kBT ln 2. As previously noted, the entropy contribution for isolated atoms
is overestimated (by a factor of two) in the present tight-binding model. The remaining
coefficientsuk (for k = 1, kmax) are free, fitting parameters at each temperature.

For each isotherm, withkBT /t taking values between 0 and 0.5, we begin by using
the trial function (5) to fit results from the exact diagonalizations for the random ensemble
of realizations used in the mean-field approximation, at a spectrum of occupation densities.
Then, using the coefficientsuk(T ) obtained as the site energies for particles withk occupied
nn sites, grand-canonical Monte Carlo simulations are performed to obtain equilibrium
configurations and densities as functions of the chemical potential along the isotherm. Then,
the process is iterated. A modest sample of equilibrium configurations, from those obtained
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Figure 3. Self-consistent results atkBT /t = 0.4 for the fitting parametersuk(T ), giving the
energy (in units oft) of a particle withk occupied nn sites, versusk normalized to the lattice
coordination. Open circles are for the bcc lattice with hopping parametert , triangles are for
the fcc lattice with hopping parametert , and full circles are for the fcc lattice with hopping
parameter 0.82t .

at the chosen temperature and a spectrum of the possible system densities, are again exactly
diagonalized. In contrast to the case for the previous mean-field approach, the ion positions
are no longer random ones but are correlated with the electronic energy as a function of the
local configuration. The states are occupied using the Fermi function, and new parameters
uk(T ) are obtained from a least-squares fit to the new electronic free energies as a function
of the possible fractional occupation of the lattice. Monte Carlo simulations are again
performed with the new site energies. The procedure is repeated to self-consistency at each
temperature of interest. We then proceed to obtain the self-consistent phase coexistence
and the electronic properties of the system. The fits, using equation (5), are very good,
with relative differences always less than 2%. An example, obtained as described, of the
coefficientsuk for the bcc structure and withkBT /t = 0.4, a near-critical isotherm, is shown
as open circles in figure 3. Such results clearly demonstrate the non-linear dependence of
the coefficients on the indexk, expected from the non-additive character of the interactions.
A system with nn pair interactions would be represented exactly by (5) with coefficientsuk
proportional to the indexk.

Our simulation boxes are too small to allow a detailed study of the critical region.
However, the overall features of the self-consistent liquid–vapour coexistence curve have
been obtained; the results are shown as open circles in figure 2. The critical temperature,
in units of the hopping parameter, is reduced to about 0.42 from the previous mean-field
result of 0.56.

We have sought further proof that the number of occupied nn to the occupied sites is the
important factor in determining the electronic energy of our system; that is, that the fitting
method (equation (5)) gives high-accuracy results. As a test, after equilibration, we have
generated one hundred ionic configurations from successive, complete, Monte Carlo sweeps
of our lattice, at fixed temperature and chemical potential. The exact electronic energy for
each of the configurations was obtained and compared to that of the fitting method, using
the previous set of fixeduk for the chosen temperature. We have chosen a temperature
kBT /t = 0.4 and a chemical potentialµ/t = −2.275 as the conditions for performing
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Figure 4. The fractional-occupation density (upper panel) and electronic free energy of the
system (in units oft , lower panel) for configurations resulting, after equilibration, from one
hundred, successive, complete, Monte Carlo sweeps of the bcc lattice. The thermodynamic
conditions are close to those appropriate to the critical point:kBT /t = 0.4 andµ/t = −2.275.
The solid lines (to guide the eye) join the resulting densities and also the electronic energies
obtained from exact diagonalizations of the ionic configurations. The circles give the electronic
energies from the fit of equation (5) to the energies of the isothermal ensemble, i.e. from the
fixed setuk(T ) used in the Monte Carlo simulation.

the grand-canonical Monte Carlo simulations. These conditions are near the critical point,
where the density has very strong fluctuations and the ionic configurations change from
isolated clusters to complex percolating structures. The fractional-occupation density was
observed to indeed have large fluctuations, as shown in the upper panel of figure 4 (the line
connecting the results for each sweep is shown to guide the eye). For each of the ionic
configurations obtained, the electronic energies per ion are also shown in the lower panel of
figure 4; results are exhibited for both the exact diagonalizations of each ionic configuration
(connected by a solid line) and points arising from the fit of equation (5). The accuracy
achieved by the fit of equation (5) can be seen to be impressive, even in this case which
has large critical fluctuations.

The above results show that the description of the electronic free energy in terms of the
local coordination of each ion (5) is able to give accurate results for ionic configurations with
very different kinds of disorder. These results support our previous use of this map [7, 8], in
which the coefficients of (5) were first calculated assuming that the ionic correlation function
was that of a hard-sphere system and then were used to obtain alternatively correlated
structures with strong clustering effects.

3.3. The influence of the underlying lattice

In order to study the influence of the choice of the underlying lattice structure on the
thermodynamic properties of the model, we have compared results obtained using a fcc
lattice with the previous ones which were based on the bcc lattice. For the fcc system,
we have used simulation parallelepipeds of five by five by ten cubic cells (1000 sites), and
periodic boundary conditions. To compare the phase diagrams for a given fluid obtained by
using different background lattices, we must first consider how to establish that the fluid is
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the same one. We assume that a given fluid is specified by its density and cohesive energy,
at T = 0, when the lattice is completely full. As the coordination number is different
for bcc (8) and fcc (12) lattices, equating the fluid densities in the two systems is easily
accomplished by a change in the lattice constant. This parameter does not appear explicitly
in the calculations, since all of the results are given as depending on the filling fraction. The
zero-temperature cohesive energies per ion of the completely full lattices areuf cc = −2.516t
andubcc = −2.064t , if the same hoppingt is used. To make these cohesions equal, with
t defining hopping in the bcc system, we settf cc = 0.82t . At non-zero temperatures, all
thermal energies will be left scaled to thet for the bcc system, while the fcc electronic
energy calculations will take into account the modified hopping parameter.

Figure 3 shows that the fcc parametersuk (triangles), obtained self-consistently for
the example of a near-critical isotherm,kBT /t = 0.4, are quite different from those for
the bcc lattice (open circles), if scaled to the samet . However, when the fcc calculation
uses, for the electronic energy calculations, a hopping parameter of 0.82t (full circles), the
curve almost coincides with the bcc data. Further, in figure 2 we also show the fcc liquid–
vapour coexistence curves obtained using the electronic hoppingtf cc = 0.82t . The fcc
mean-field approximation (dotted line) yields a critical temperaturekBT

mf

C /t = 0.55. The
liquid–vapour coexistence obtained with the self-consistent map (full circles) has a critical
temperaturekBTC/t = 0.42. Self-consistency yields a similar reduction from the mean-
field result for both lattices. These coexistence curves also exhibit an asymmetry between
the liquid and vapour branches. When we compare, in figure 2, the self-consistent fcc
liquid–vapour coexistence curve (with the electronic hopping of 0.82t) with the previous
bcc result, the two curves can be seen to be quite similar; the main discrepancy is in
the liquid branch, due to the lattice-coordination difference. Given these comparisons, we
conclude that the choice of background lattice does not strongly affect the thermodynamic
properties calculated for the fluid under consideration.

3.4. Electrical conductivity

Our model, although extremely simplified, allows the electrons to couple with the ionic
structure. The effects of this coupling are crucial to the electronic structure of the model.
Mean-field methods with random occupation of the lattice, like sophisticated treatments in
which the electronic density of states in a liquid is obtained assuming hard-sphere ionic
correlation functions [4], would give an electronic density of states which is independent
of the temperature. In self-consistent calculations, the electronic structure will reflect the
dramatic change in the ionic correlations accompanying the thermodynamic phase change.
This self-consistent interdependence of the electronic and ionic structures should dominate
the electronic properties of the system. We examine some of the consequences of this
coupling below, returning to the bcc lattice model.

We have explored the relationship between electrical conductivity and ionic structure.
The experimental signature of a metal–non-metal transition in these systems is a decrease
of several orders of magnitude in the conductivity of the expanded fluid. In our previous
work [7, 8], we suggested that such behaviour is dominantly driven by the onset of a lack
of percolation of the ionic cluster structure leading to a lack of macroscopic delocalization
of valence electrons, rather than by other features such as a transition to a non-metal
due to the Fermi level moving into a regime in which the disorder leads to interference-
induced (Anderson-type) electronic localization. The present model allows a probing of that
assumption, since the electronic wavefunctions can be found for any ionic structure.

In our model, it is obvious that the ionic percolation sets a lower bound in density for
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the existence of metallic conductivity. We can begin to estimate a quantitative measure
of the ionic percolation effects on the electrical conductivity through the Kirchhoff’s law
model proposed by Nieldet al [12]. Given an ionic structure, this simplest approximation
replaces each pair of occupied nn sites by a classical, fixed-value resistor. The resistance
of the resulting network is calculated along the various directions in the simulation box.
The value of the ‘bond resistance’ may be fixed to obtain the experimental conductivity
in the dense liquid (near the triple point) and then the predictions of the model, along the
coexistence curve or along any isotherm, can be compared to the experimental data for the
alkali fluids, to see whether similar features are obtained.

The above method neglects the effects of electronic wavefunctions, which may preclude
electronic conduction even if the ionic structure percolates throughout the system. The
excellent congruence between the results obtained in our previous work [7, 8] and data
for fluid caesium suggested that electron localization, due to disorder-induced interference
effects (Anderson-type effects, in contrast to a lack of percolation), was not important in
the conductivity of expanded alkali metals. In the present model, we may compare the
results of the above simplest Nield model with a quantum estimate for the conductivity—
for example, the results of assuming a loss of phase memory (due to scattering) after a nn
hop. This alternative is a variant of the randomized-phase model of Hindley [13] in the
Kubo–Greenwood formula [14], modified for the disordered topology of hopping sites in
our model. In this alternative approach, the conductance between occupied nn sitesi and
j is given by

1/Ri,j ∝
∑
m6=n

∂fn

∂εn
|φn(i)|2|φm(j)|2δ(εn − εm) (6)

which requires a non-zero product, at nn sites, of different electronic states,m andn, which
have the same energy, for this elastic scattering case. In our finite-size system, the condition
of elastic scattering will be relaxed, with the delta function being replaced by a Gaussian of
variance equal to 0.16t . Actually, the precise Gaussian-width value has little importance to
the results, except near complete filling of the lattice. The required energies and amplitudes
are obtained from the exact diagonalizations for typical equilibrium configurations for the
thermodynamic parameters of interest. Results for the macroscopic conductivity are then
obtained as in the Nield model but using (6) for each ‘bond resistor’. This approach partially
takes into account electron-wavefunction effects on the conductivity. We have used it, with
phase-memory-loss scattering after a nn hop, to include the strong scattering to be expected
in a hot disordered fluid.

For some particular ionic configurations, near the percolation threshold obtained,
the results of the Kubo–Greenwood calculation could show a strong dispersion in the
conductances of the different bonds due to interference effects, which would then be reflected
in an overall resistance very different from that due to setting all ‘bond resistors’ equal to
their mean value, as is done in the simplest approach. For example, Franz [10], using a
Cayley-tree approximation for the ionic configuration and our Kubo–Greenwood formula
for the conductivity, obtains a critical density for quantum percolation which is higher than
that for classical percolation. However, in the statistical sampling of ionic configurations
from our model, it was found that most configurations do give global resistances which are
well described by the simplest version of the Kirchhoff’s law model. An example of the
results of each of our two procedures is shown in figure 5, for a near-critical isotherm of
the bcc lattice. As can be seen, there is good agreement between the alternative methods,
which indirectly supports our previous hypothesis that the non-metal–metal transition in the
alkali fluids is mainly driven by the onset of percolation of ionic structures.
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Figure 5. Electrical conductivity estimatesσ for the bcc lattice, normalized to the conductivity
at full lattice occupationσ0, on a logarithmic scale, versus the density, for the isotherm
kBT /t = 0.4. The full triangles are obtained using the Greenwood–Kubo quantum values of
the bond resistors (equation (6)); the open circles are the results of using a fixed-bond resistor;
both approaches then use the Kirchhoff model for a spectrum of Monte Carlo configurations.

4. Summary

We have presented a tight-binding lattice-gas model, which can be solved to obtain its
structural and thermodynamic properties. The model takes into account the inhomogeneity
of statistical configurations of the system, driven by non-additive interactions due to valence-
electron delocalization. A self-consistent procedure is used to determine the equilibrium
structures: Monte Carlo simulations coupled to exact diagonalizations and site-energy
fittings.

As previously noted, the first qualitative consequence of the feedback from the electronic
to the ionic structures in our model is the existence of a vapour–liquid phase transition. At
low temperatures, random distributions of the ions, assumed in studies with frozen disorder,
are thermodynamically unstable. The instability can cause a condensation into drops of
dense liquid at coexistence with a vapour at lower density. The qualitative features of
the condensation which results from our model, driven by the electronic band energy,
will be compared with experimental alkali-fluid data. Although the extreme simplicity
of the present model should preclude expectations of quantitative agreement, the phase
diagrams in figure 6, our self-consistent results (full and open circles, for bcc and fcc
structures respectively) and experimental data for Cs (solid line), all in units of the critical
temperatures and densities, show an appealing similarity. The strong asymmetry, observed
in the experiments, between the coexisting vapour and liquid densities is also quite clear in
the results from our model; we emphasize this feature by showing the ‘diameter function’
from the fcc calculation. This asymmetry contrasts with the coexistence curve results of
lattice-gas models with additive nn pair interactions, also shown in figure 6.

Our second qualitative result is that, in this model, equilibrium density fluctuations
influence the phase diagram only weakly. The critical temperature in the mean-field
approximation is about 20% higher than the value obtained in the Monte Carlo simulation.
This difference is similar to that obtained for usual models of simple fluids, with pair
interactions in three dimensions. However, such a modest difference contrasts with the
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Figure 6. Reduced liquid–vapour coexistence curves, temperatures and densities scaled to their
critical values. The full line is a fit to experimental data for Cs. The circles are the self-consistent
Monte Carlo results from the present model; the full circles are for bcc structure, and the open
circles are for fcc structure. The chain line shows the diameter functionρd = (ρL + ρV )/2 for
the self-consistent Monte Carlo results for the fcc lattice. The dotted line is the result for a bcc
lattice-gas model with additive nn pair interactions.

much larger effect—a ratio of almost a factor of three—in our previous work using
pseudopotentials [7, 8]. The origin of this contrast is that in the previous work both the ion–
ion and the ion–electron correlations are neglected in the mean-field perturbative treatment
using the homogeneous electron gas as a reference. The poor description of ion–electron
correlations, even after the perturbation of the reference system, is the principal cause of
the high critical temperature which results. In contrast, in the present tight-binding model,
ion–electron correlations are treated exactly, there are no direct ion–ion interactions to be
affected by the correlations of the ionic structure, and the difference between the mean-field
treatment (a random filling of the lattice sites) and the simulation is only due to corrections
of the electronic energy due to the effects of ion–ion correlations.

The electrical conductivity of the system was estimated, using a quantum-resistor
network and the self-consistent ionic structures. The metal–non-metal transition was then
probed in a manner which is consistent with the previous structural treatment. It appears
that the main reason for the material becoming non-metallic, on reducing its density, is the
lack of percolation of its self-consistent ionic structure, rather than this being due to more
complicated interference-induced electron localization effects.

The present model has provided confirmation that an energy mapping which reflects the
local coordination of each particle gives a good description of the system. Thus, we have
verified that the approach followed in our previous work [7, 8] is justified and adequate. Our
conclusion that the system becomes metallic or not according mainly to the self-consistent
percolation of the site occupation is based on the one-electron approximation. Since we
assumed a paramagnetic system and did not include Hubbard-type interactions, we cannot
speculate on the effects of Mott–Hubbard interactions on the metal–non-metal transition.
Such effects will be investigated in future work.

The model is a very simplified representation of a metal-atom fluid, as only the electronic
band energy contributes to the system’s cohesion. Nevertheless, the results obtained show
that the model contains the basic ingredients to allow qualitative reproduction of the peculiar
behaviour observed in the alkali fluids. These peculiarities include the metal–non-metal and
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liquid–vapour transitions, the general shape of the coexistence curve, and the connection
between the ionic and electronic structures. The self-consistency of the electronic and ionic
structures is the feature which allows the model to give a unified treatment of a wide
spectrum of the system properties and to qualitatively describe observations for the alkali
fluids.
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